

روش تحقيق

Dr. Yousef Alimohamadi Epidemiologist

مطالعه type of study

مطالعات مداخله اي

• اسامی مختلف:

مطالعات مداخله ای=تجربی=Experimental=Interventional

• توجه به مسائل اخلاقی در این نوع پژوهش مهم است

مطالعه تجربي روي انسان

در بیماريهائي که در حیوانات قابل تولید نیستند و با کار آزمائیهاي حیواني بيضرر بودن آنها ثابت شده است به کار می رود

قاطعانه ترین رویکرد به مشکلات علمی است

ملاحظات اخلاقی و مالی از موانع اصلی انجام آن است

انواع مطالعات مداخله ای:

الف) كار آز مائيهاي تصادفي شده

ب)كار آز مائيهاي غير تصادفي

كار آزمائي شاهددار تصادفي شده (Randomized Controlled Trials RCT)

مراحل انجام:

2- انتخاب جمعیت مرجع و جمعیت مورد آزمایش

1- طراحي دستور العمل اجرا

4- دستکاري يا مداخله

3- تصادفی کردن

6۔ بررسي پيامد

₅ـ پيگير*ي*

Level of evidence

تعریف کار آزمایی بالینی

کارآزمایی بالینی مطالعه ای است آینده نگر که برای مقایسه اثرات و ارزش یک مداخله (یا مداخله ها) در برابر شاهد در نمونه های انسانی انجام می شود.

هدف کار آزمایی بالینی

• ارزیابی کارایی (efficacy) و اثربخشی (effectiveness) یک مداخله یا داروی جدید

• کمک به روشن شدن نقش داروها یا مداخله های جدید در عملکرد بالینی

طبقه بندي انواع كار آزمايي

- کارآزمایی بالینی (clinical trial): برروی بیماران انجام میشود.
- کارآزمایی میدانی (field trial) یا کارآزمایی پیشگیری: به منظور جلوگیری از ایجاد یا گسترش یک بیماری یا پیامد سلامتی انجام میشود.(بر افراد سالم انجام می شود)
- کارآزمایی جامعه (community trial): بر روی دو یا چند جامعه انجام می شود و واحد درمانی آن به جای ₂₅ فرد، "جامعه" است.

طرح کلی کار آزمایی بالینی

SP = Study Population

EC = Eligibility Criteria

R = Randomize intervention

T = Elapsed time

PHASES OF CLINICAL TRIALS

- × Phase Zero trials- Pre-human animal and laboratory testing
- × Phase I trials
- Phase II trials
- Phase III trials
- × Phase IV trials

Phase 0: Preclinical

- × Pre-clinical (in vitro) animal studies
- Looking for dose-response

- × Phase 0 trials serves as a good tool for clinical researchers in testing the safety and efficacy of drugs at micro level before the onset of phase I trial
- * By design, phase 0 trials threaten lower risks to human subject than traditional phase I trials. As such, fewer preclinical supporting data are required prior to conducting a phase 0 trial.

Phase I

- Patients: 20 to 100 healthy volunteers or people with the disease/condition.
- Length of Study: Several months
- Purpose: Safety and dosage
- Percentage of Drugs that Move to the next
 Phase: 70%

- Phase I trials are the first stage of testing in human subjects.
- This phase is designed to assess the safety, tolerability,pharmacokinetic, and pharmacodynamics of a drug.
- Dose escalating (intolerable side effects-MTD)
- □ Single ascending dose, multiple ascending dose, food effect cross over studies.

Phase II

- Patients: Up to several hundred people with the disease/condition.
- Length of Study: Several months to 2 years
- Purpose: Efficacy and side effects
- Percentage of Drugs that Move to the Next Phase: 33%

- □ After dose finding, the next goal is to evaluate whether the drug has any biological activity or effect.
- On larger groups of volunteers and patients (100-300) and are designed to assess how well the drug works.
- When the development process for a new drug fails, this usually occurs during Phase II trials when the drug is discovered not to work as planned, or to have toxic effects.

- Phase II studies are sometimes divided into Phase IIA and Phase IIB.
 - Phase IIA is specifically designed to assess dosing requirements (how much drug should be given).
 - Phase IIB is specifically designed to study efficacy (how well the drug works at the prescribed dose(s)).

Phase III

- Patients: 300 to 3,000 volunteers who have the disease or condition
- Length of Study: 1 to 4 years
- Purpose: Efficacy and monitoring of adverse reactions
- Percentage of Drugs that Move to the Next Phase: 25-30%

- The most expensive, time-consuming and difficult trials to design and run.
- Sometimes called the "pre-marketing phase".
- It is typically expected that there be at least two successful Phase III trials, demonstrating a drug's safety and efficacy, in order to obtain approval from the appropriate regulatory agencies such as FDA.

Phase IV

- Patients: Several thousand volunteers who have the disease/condition
- Purpose: More about the side effects and safety of the drug

- Often called Post Marketing Surveillance Trials.
- After registration, used in routine conditions.
- Rare side-effects.
- Study design (Observational studies).
- Cost-effectiveness analysis in different conditions.

Clinical Trial Steps

- Study population definition (Eligibility criteria)
- Design
- Sample size
- Control group
- Random allocation
- Blindness
- Intervention
- Outcome assessment
- Complications
- Compliance
- Data management
- Analysis
- Report

Types of Trial Designs(Cont.)

- Comparison Structure:
 - Parallel,
 - Crossover and
 - Group Allocation Designs
- Extensions of the Parallel Design:
 - Factorial and
 - Large, Simple Designs
- Testing for Hypotheses Other than Superiority:
 - Equivalency and
 - Non-Inferiority Designs
- Adaptive Designs

Single Arm Trials

Mostly in phase II clinical trials

Single Arm Trials (Cont.)

Advantages:

- All resources, i.e. subjects and financial costs, are concentrated on one group
- Specify how many subjects should respond to the new treatment in order to justify further investigation
- Useful for serious diseases such as cancers

Disadvantages:

By not conducting a randomized comparison, we are left with all the difficulties of interpretation the results

Parallel Group Designs "Gold-Standard" of Clinical Research.

Parallel Group Design(Cont.)

- There are as many groups as study treatments under comparison.
- Each person is randomly assigned to one treatment group.
- All treatment groups are treated and evaluated simultaneously.

Parallel Group Design(Cont.)

- Advantages:
 - The duration of the study is shorter
 - It is applicable to acute conditions
 - The statistical analysis requires fewer assumptions
 - It is simpler and makes bias-free comparisons easier to obtain.

Parallel Group Design(Cont.)

- Disadvantages:
 - It requires a larger sample size.
 - In some few situations, it cannot be applied.

طراحی متقاطع: CROSS-OVER DESIGN

DESIGN OF A **UNPLANNED** CROSSOVER TRIAL

Advantages:

- It removes the interpatient variability from the comparison between treatments.
- It provides the best unbiased estimates for the differences between treatments.
- It decreases number of patients needed.

Disadvantages:

- Treatment can't have permanent effects or cures.
- It increases the duration of the study.
- Its analysis is not straightforward. Researchers should consider the paired design, period and carry over effects.
- Dropouts more significant.

طراحی فاکتوریل: FACTORIAL DESIGN

2×2 Factorial Trial Design

	A			
В		Yes	No	Total
	Yes	n _{AB}	n _{BO}	N _B
	No	n _{AO}	n _{oo}	N _B ′
	Total	N _A	N _A ′	N

Factorial trial designs are useful in two circumstances:

- 1) When two or more treatments do not interact, factorial designs can test the main effects of each using smaller sample sizes and greater precision than separate parallel groups designs.
- 2) When it is essential to study treatment interactions, factorial designs are the only way to do so.

